Устный счет: техника быстрого счета в уме

Содержание:

Способ применения медикамента для детей и взрослых

Препарат «Пиобактериофаг поливалентный» можно применять перорально, орошениями, клизмой или впрыскиванием на зараженные районы тела. Дозирование, предназначенное для внутреннего приема, рассчитывается в зависимости от возраста пациентов. Например, для детей до одного года оптимальным дозированием являются 10 миллилитров препарата. Малышам до трех лет – по 15 миллилитров. Детям до восьми лет назначают по 20 миллилитров. От восьми лет, а также взрослым пациентам назначают от 20 до 30 миллилитров лекарства. Принимают препарат внутрь на голодный желудок за час до еды. При вводе клизмы следует соблюдать следующие дозировки, согласно инструкции «Пиобактериофага поливалентного»:

  • детям до года можно назначать 20 миллилитров;
  • в возрасте до трех лет – 30 миллилитров;
  • до восьми лет – до 40 миллилитров;
  • в возрасте от восьми лет и взрослым назначают от 40 до 50 миллилитров.

Обучение делению с остатком

Когда ребенок усвоит материал о делении, можно усложнять задачу. Деление с остатком – это следующая ступень обучения. Объяснять нужно на доступных примерах:

  • Предложите ребенку разделить 35 на 8. Запишите в столбик задачу.
  • Чтобы ребенку было максимально понятно, можно показать ему таблицу умножения. В таблице наглядно видно, что в число 35 входит 4 раза число 8.
  • Запишите под числом 35 число 32.
  • Ребенку нужно от 35 вычесть 32. Получится 3. Число 3 является остатком.

Деление с остатком

Простые примеры для ребенка

На этом же примере можно продолжить:

  • При делении 35 на 8 получается остаток 3. К остатку нужно дописать 0. При этом после цифры 4 в столбике нужно поставить запятую. Теперь результат будет дробным.
  • При делении 30 на 8 получается 3. Эту цифру нужно записать после запятой.
  • Теперь нужно под значением 30 написать 24 (результат умножения 8 на 3). В итоге получится 6. К цифре 6 тоже нужно дописать ноль. Получится 60.
  • В число 60 помещается цифра 8 входит 7 раз. То есть, получится 56.
  • При вычитании 60 от 56 получается 4. К этой цифре тоже нужно подписать 0. Получается 40. В таблице умножения ребенок может увидеть, что 40 – это результат умножения 8 на 5. То есть, в число 40 цифра 8 входит 5 раз. Остатка нет. Ответ выглядит так – 4,375.

Данный пример может показаться ребенку сложным. Поэтому нужно много раз делить значения, у которых будет остаток.

Деление с остатком

Завершающим этапом уроков на закрепление навыка деления будет решение заданий с остатком. Они обязательно встретятся в решебнике для 3–4-го класса. В гимназиях с математическим уклоном школьники изучают не только неполные числа, но и десятичные дроби. Форма записи примера уголком останется прежней, отличаться будет только ответ.

Примеры на деление с остатком берите несложные, можно преобразовывать уже решенные задания с целым числом в ответе, прибавляя к делимому единицу. Это очень удобно для ребенка, он сразу увидит, чем примеры похожи и чем отличаются.

Урок может выглядеть так:

  1. Расскажите ученику третьего класса, что не все цифры можно поделить поровну. Для иллюстрации понятия возьмите натуральное число до 10. Например, попробуйте вместе разделить 9 на 2. Форма записи решения столбиком получится такой:
  2. Объясните школьнику, что остатком считается последнее число для деления, которое меньше делителя. Конец записи будет таким: 9:2=4 (1 — остаток).

Как научить ребёнка быстро считать в уме?

Несмотря на большое количество способов, как научить быстро считать в уме, можно выделить несколько основных этапов.

Этап 1. Изучение порядковых чисел от 1 до 10, далее от 10 до 20 и т.д. и их расположения в числовому ряду.
Этап 2. Поиск одного или нескольких предметов среди множества.
Этап 3. Уверенное понимание понятий «поровну», «больше», «меньше».
Этап 4. Понимание различий количественного (один, два и т.д.) и порядкового счета (первый, второй и т.д.).
Этап 5. Умение соотносить количество предметов с цифрами.
Этап 6. Умение решать простые арифметические задачи на вычитание и сложение, а также с использованием нескольких способов

Важно отметить, что процесс обучения является очень кропотливым. Ребенок не должен скучать! Превратите процесс в увлекательную игру

Например, одевая его утром, посчитайте пуговицы, идя по делам, посчитайте с ним количество красных машин и прочее. Кроме того, сегодня доступны разнообразные книжки, интерактивные игрушки, которые превратят обучение счету в интереснейший процесс. Необходимо знать, что процесс обучения счета состоит из двух составляющих:
двигательного компонента: сначала ребенок передвигает предметы руками, далее указывает на них, а затем считает их глазами, выполняя все действия в уме;
речевого компонента: сперва дети громко проговаривают числа, действия и результат, потом они делают это шепотом и, в конце концов, считают про себя.

Настольные игры для развития навыка

Следующие настольные игры позволяют весело и без зазубривания научить ребенка счету, а затем совершенствовать этот навык

Ваши дети даже не заметят, что идет обучение! Эффективность этих игр уже подтверждена многими родителями – обратите внимание на количество положительных отзывов

“Фрукто 10”

Подойдет для детей с 7 лет. Два уровня сложности.

“Фрукто 10” заставляет выполнять множество операция с цифрами каждую минуту!

Далее вы можете посмотреть видеоинструкцию к игре:

“Турбосчет”

Еще один бестселлер “Турбосчет” – мгновенно увлекает и младших школьников и детей постарше.

Видеоинструкцию к ней смотрите далее:

“Этажики”

В игре “Этажики” вам предстоит путешествовать на воздушном шаре и хорошо потренировать навык устного счета, а дети наглядно усвоят принцип перехода через десяток.

“Котосовы”

В игре “Котосовы” ваши дети научатся мгновенно определять количество не пересчитывая.

Правила и способы игры вы можете посмотреть в следующем видео:

Также вы можете приобрести сразу несколько игр для развития этого навыка и при этом сэкономить, в этом случае обратите свое внимание на “Игротеку”.

Самые простые техники быстрого счета

Если что-то показалось сложным, есть ряд методик быстрого счета:

  1. Как быстро научиться считать проценты. Чтобы найти 15% от числа, находят 10% и добавляют половину от 10%. Например, 15% от 664 = (10%) + (10%/2) = 66,4+33,2 = 99,6. Таким же образом раскладывают другие числа на составляющие.
  2. Умножая двузначное число на однозначное, раскладывают первое на две части. Например, 45 раскладывают на 40 и 5. Затем производят технику умножения каждой части и сложение итоговых результатов.
  3. При умножении трехзначных чисел также раскладывают его на части. Например, 137*5 решают так: 100*5 + 30*5 + 7*5 = 500+150+35 = 650+35 = 685.
  4. Умножение на 10 решают приписыванием к основному числу нуля. Например, 100*10 = 1000.
  5. Умножение на 5 решают так: число умножают на 10, затем делят на 2. Например, 568*5 = (568*10)/2 = 5680/2 = 5000/2+600/2+8/2+0/2 = 2500+300+4+0 = 2840.
  6. Умножение на 11 выполняют так – мысленно раздвигают начальное число и вписывают сумму крайних чисел. Например, 18*11 = 1_(1+8=9)_8 = 198.
  7. Умножение на 1,5 выполняют так – число делят на 2 и прибавляют полученную половину к целому. Например, 24*1,5 = 24/2+24 = 36.
  8. Умножение на 5 делают * на 10 и делением на 2.
  9. Умножение на 6 делают так (х*3)*2.
  10. Чтобы умножить на 12, сначала умножают на 10 и дважды добавляют исходное число. Например, 12*12 = 12*10+12+12 = 120+12+12 = 120+24 = 144.
  11. Умножая на 13, сначала умножают на 3 и 10 раз добавляют исходное число. Например, 3*13 = 3*3+10*3 = 9+30 = 39.
  12. Умножая на 14, умножают на 7, затем на 2.
  13. Умножая на 15, выполняют умножения на 10, затем 5 раз добавляют исходное число.
  14. Умножая на 16, умножают на 8, затем на 2.
  15. Умножение на 17 выполняют умножением на 7, затем 10 раз добавляют исходное число.
  16. Чтобы умножить на 18, делают умножение на 20 и два раза отнимают исходное число.
  17. Умножая на 19, умножают на 20 и один раз отнимают исходное число.

Хитрости подсчета

Облегчить подсчет в уме поможет использование специальных правил. Например, существует легкий способ, как умножить любое двузначное число на 11. К примеру, необходимо умножить 79 на 11. Необходимо в уме представить свободное место между цифрами 7 и 9. В нем нужно расположить сумму этих двух цифр, если она представляет собой однозначное число. Если в сумме получается двузначное (в данном примере 7+9=16), между цифрами, составляющими множитель необходимо поставить только вторую цифру (7_6_9). Далее, к первой цифре множителя нужно добавить единицу (7+1=8). В итоге получится 869 – произведение чисел 79 и 11. 

Еще более простая техника умножения чисел на 4. Для этого просто следует умножить число на 2, потом еще раз на 2.

Существует очень простая техника того, как считать проценты в уме. Так, например, очень легко определить 15% от какого либо числа. Для этого следует взять 10% от него, разделив его на 10 и добавить к ним половину полученного – еще 5%. Так, для определения 15% от числа 390, следует провести следующие действия: 390:10=39 – это 10% от числа. 39:2=19,5. 19,5+39=58,5 – 15% от числа 390.

Потренировавшись несколько раз, можно будет легко осуществлять такие операции в уме. Подобных приемов существует огромное множество, знание основных из них значительно облегчит процесс устного счета.

Алгоритмы

Быстро найти результат в уме поможет знание простых арифметических правил и закономерностей:

  • Чтобы вычесть 9, можно сначала вычесть 10, а затем прибавить 1. Аналогично вычитают числа 8 и 7, только потом прибавляют 2 и 3 соответственно.
  • Числа 8 и 5 складывают так: сначала к 8 прибавляют 2 (чтобы получилось 10), а затем – 3 (5 – это 2 и 3). Аналогично решают все примеры на сложение с переходом через десяток.

Для сложения двузначных чисел подойдут алгоритмы:

27+38=(27+40)-2=65 27+38=(20+30)+(7+8)=50+15=65

В первом случае второе слагаемое округляется до десятков, а затем вычитается прибавленное число. Во втором — сначала складываются разрядные слагаемые, а затем – результаты.

При вычитании удобно округлять вычитаемое:

95-29=(95-30)+1=64
Или вычитать поразрядно: 75-24=75-20-4=51

Методики устного счета и упражнения для взрослых

Спектр решаемых задач и проблем взрослого человека гораздо шире, чем у ребенка. В ряде профессий и в быту людям ежедневно приходится сталкиваться с задачками математического характера по сто раз на день:

  • Сколько прибыли мне это принесет.
  • Не обсчитали ли меня в магазине.
  • Не завысил ли перекупщик наценку на купленный товар.
  • Дешевле взять кредит с ежемесячной выплатой процента или раз в три месяца.
  • Что лучше – почасовая оплата 150 рублей или ежемесячный оклад 18 000 руб.

Список можно продолжать, но факт необходимости навыков устного счета неоспорим.

Подготовительный этап – осознание необходимости устного счета

Ментальная математика и любая другая методика, призванная научить считать в домашних условиях в уме быстрее и эффективнее, обучает взрослых и детей.

Единственное их отличие – сфера применения знаний. Разработчики курсов ММ стараются подбирать задачки для взрослых таким образом, чтобы они были востребованы в работе.

☞ Пример:

У вас на руках фьючерсный контракт с датой исполнения 1 января 2019 года и вы задались целью просчитать, на какой день недели придется это событие (вдруг пятница). Все операции проводятся с последними двумя цифрами года, в нашем случае – это 19. Вначале нужно прибавить к 19 четверть, это можно сделать путем простого деления: 19:2 = 8,5, затем 8,5:2 = 4,25. Цифры после запятой отбрасываем. Прибавляем: 19 + 4 = 23. День недели определяется просто: от полученной цифры необходимо отнять самое близкое к ней произведение с цифрой 7. В нашем случае это 7*3 = 21. Следовательно, 23 – 21 = 2. Дата экспирации фьючерса – второй день или вторник.

Проверить несложно, заглянув в календарь, но если его нет под рукой, такая методика может оказаться полезной, и поднимет вас в глазах окружающих.

Видео сюжет

Методики быстрого сложения, вычитания, умножения и деления разных чисел

Примеры с разной степенью сложности требуют разного количества времени, хотя с постоянной практикой число затраченных усилий уменьшается.

Сложение и вычитание в ментальной математике имеют тенденцию к упрощению. Сложные и глобальные задачи делятся на более маленькие и простые. Большие числа округляются.

☞ Пример сложения:

17 996 + 2676 + 3592 = 18 000 + 3600 + 2680 – 4 – 8 – 4 = 21600 + 2000 + 600 + 80 – 10 – 6 = 23600 + 600 + 70 – 6 = 24200 + 70 – 6 = 24270 – 6 = 24264.

Поначалу будет трудно удержать в голове такую длинную цепочку и придется мысленно проговаривать все цифры, чтобы не сбиться, но по мере улучшения краткосрочной памяти, процесс будет становиться легче и понятнее.

☞ Пример вычитания:

Для вычитания процесс идентичный. Вначале отнимаем округленное число, а затем прибавляем излишки. Простой пример: 7635 – 5493 = 7635 – 5500 + 7 = 2135 + 7 = 2142

Для умножения и деления существуют свои маленькие хитрости, в том числе и ранее упомянутые в примере с датами. На практике чаще всего встречаются примеры с процентами или пропорциями. Суть их решения также сводится к дроблению и упрощению задачи. Некоторые можно решить просто одним щелчком.

☞ Пример умножения и деления:

Вы положили на депозит 36 000 у. е. под 11% и вам необходимо рассчитать, сколько прибыли он принесет. Секрет вычисления прост – первая и последняя цифра останутся прежними, а середина будет суммой двух крайних чисел. Так 36 * 11 = 3 (3+6) 6= 396 или в нашем случае 396/100% = 3 960 у. е.

В большинстве ментальных методик умножения и деления обязательным и безальтернативным условием является знание таблицы умножения до десяти. Для детей начальной школы программа обучения устному счету будет отличаться.

Обучение делению в столбик в тетради

Начинать обучение нужно тогда, когда ученик понял материал о делении на практике, с помощью игры и таблицы умножения.

Пример деления

Нужно начинать делить таким образом, применяя простые примеры. Так, деление 105 на 5.

Объяснять математическое действие нужно подробно:

  • Напишите в тетради пример: 105 разделить на 5.
  • Запишите это, как при делении в столбик.
  • Расскажите, что 105 – делимое, а 5 – делитель.
  • С учеником определите 1 цифру, которая допускает деление. Значение делимого – 1, эта цифра не делится на 5. А вот второе число – 0. В итоге получится 10, это значение допускается разделить данный пример. Число 5 два раза входит в число 10.
  • В столбике деления, под числом 5, напишите цифру 2.
  • Попросите ребенка число 5 умножить на 2. По итогу умножения получится 10. Это значение нужно записать под числом 10. Далее нужно написать в столбике знак вычитания. От 10 нужно отнять 10. Получится 0.
  • Запишите в столбике число, получившееся в результате вычитания – 0. У 105 осталось число, которое не участвовало в делении – 5. Это число нужно записать.
  • В итоге получится 5. Это значение нужно разделить на 5. Результат – цифра 1. Это число нужно записать под 5. Результат деления – 21.

Родителям нужно объяснить, что это деление не имеет остатка.

Начать деление можно с цифр 6,8,9, затем переходить к 22, 44, 66, а после к 232, 342, 345, и так далее.

Еще один пример деления

Примеры на деление в столбик

Давайте закрепим знания на практике. Для этого разделите столбиком примеры ниже, а после проверьте полученные цифры — чур, не подглядывать!

Легкий уровень

Средний уровень

Сложный уровень

27:3=

48:4=

56:8=

72:9=

95:5=

270:15=

504:14=

315:5=

728:8=

855:9=

1749:11=

1080:45=

3888:72=

5248:64=

4818:66=

Ответы: 

  • легкий уровень: 9; 12; 7; 8; 19;
  • средний уровень: 18; 36; 63; 91; 95;
  • сложный уровень: 159; 24; 54; 82; 73.

В детской школе Skysmart ученики решают примеры вместе с енотом Максом и его друзьями. Мы подобрали для вашего ребенка тысячи увлекательных заданий — от простых логических загадок до хитрых головоломок, над которыми интересно подумать. Все это поможет легче и быстрее справиться со школьной математикой. Запишите вашего ребенка на бесплатный вводный урок математики в Skysmart — мы покажем, что математика может быть увлекательным путешествием!

История 1

Секунду назад я увидела, как пятилетний малыш уронил зеркало прямо посреди торгового зала. Осколки разлетелись по полу. Отец и мать опустились на пол возле мальчика и начали без лишних эмоций беседовать с ним о том, что он смог бы сделать сам, чтобы всё поправить.

Мать сказала малышу, что они могут спросить, есть ли в магазине щётка и совок, чтобы убрать осколки. Сын же, в свою очередь, спросил у отца, смогут ли они оплатить стоимость разбитого зеркала, если не будут покупать новые детские коньки, как планировали раньше.

Все консультанты застыли на месте, поражённые этой картиной, да и я почувствовала, что наше вмешательство будет лишним. Чёрт возьми! Как это, оказывается, легко! Случилось неприятное происшествие, и все трое в семье пытаются совместно найти выход из ситуации, ощущая взаимную помощь. Да, так и следует делать каждый раз. Но многие люди посмотрят на это в полном недоумении, ведь такое решение им в новинку.

История 2

В младших классах я дружила с одной девочкой и много раз сетовала моей маме на её поведение. Мне нравилось проводить время с ней, а она могла обмануть меня, часто вела себя неискренне, то уходила дружить с кем-то ещё, то опять приходила ко мне с предложением мира и дружбы.

И вот однажды эта девочка сказала мне, что нашей дружбе конец, и что она больше никогда не будет моей подругой. Помню, как прибежала домой вся в слезах, а моя мама процитировала высказывание, которое надолго отложилось у меня в памяти. «Судьба человека похожа на трамвай с пассажирами. Кто-то зайдёт, кто-то станет высаживаться. Кто-то будет ехать всю жизнь. А кто-то пробудет в этом трамвае совсем недолго. Но встретятся и такие люди, которых ты будешь вынуждена высадить сама, как кондуктор безбилетника».

История 3

Я помню как-то в раннем детстве, было ещё утро, а я поругался с моей мамой. Причина ссоры была пустяковая, но пока она провожала меня на уроки, я дулся и не проронил ни слова.

И вот мы с мамой вышли из автобуса. Перед тем как распрощаться и помахать рукой, мама повернулась ко мне и говорит: «Я тебя люблю». «А вот я тебя ненавижу», — вырвалось у меня от обиды. Удивительно, но мама не стала сердиться. Она просто тихонько ответила мне: «Не бросайся такими словами. Представь, что я вдруг попаду в аварию и это окажется наша последняя встреча. Разве тебе понравится, что самое последнее, что я услышу от тебя в этой жизни, это такая страшная фраза?».

Я давно уже вырос, но до сих пор, когда с кем-то прощаюсь, не допущу, чтобы мы разошлись, поругавшись или храня обиду. Ведь мы не можем быть уверены в том, увидим ли этого человека вновь.

Понравился наш контент? Подпишитесь на канал в .

Как поделить десятичную дробь на натуральное число: правило, примеры

Примеры с дробями на деление на натуральное число

Теперь давайте посмотрим, как поделить десятичную дробь на натуральное число. Вот правило и объяснение действий:

  • Решение производится по правилам «стандартного» деления в столбик. На запятую поначалу можно не обращать внимания.  Однако забывать о ней нельзя.
  • Запятая ставится в частном на том этапе, когда процесс деления целой части делимого полностью завершен.
  • Если целая часть делимого в результате осмотра оказывается несколько меньше, чем присутствующий делитель, то в частном стоит поставить «0 целых».

Это определение хорошо видно на примерах:

Примеры с дробями на деление
Примеры с дробями на деление

Многие думают, что деление столбиком выручает только в математических операциях с установленными натуральными числами. На самом деле, в случае с дробями этот простой способ также применим. Чтобы поделить десятичные дроби на натуральные числа столбиком, нужно:

  • Прибавить к десятичной дроби нули.
  • Разделить десятичную дробь на натуральное число (столбиком). Когда процесс завершится, поставьте в частном запятую и продолжить расчеты.
  • Результатом непременно окажется дробь (конечная, либо бесконечная), в зависимости от текущего остатка. Конечным результат будет в случае с нулями. А если остатки будут повторяться, то мы получим уже дробь периодическую.

Примеры с дробями на деление
Примеры с дробями на деление

Как видите, остатки повторяются, в частном также цифры чередуются. Поэтому стоит записать ответ: 6,(925).

Многозначные числа

Сложнее всего детям даются задачи на трехзначные и четырехзначные числа. Четверокласснику тяжело оперировать тысячами и сотнями тысяч. У школьника возникают следующие проблемы:

  1. Не может определить неполное число делимого для первого действия. Вернитесь к изучению разрядов натуральных чисел, поработайте над развитием внимания малыша.
  2. Пропускает 0 в записи частного. Это самая распространенная проблема. В результате у ребенка получается число на несколько разрядов меньше правильного. Чтобы избежать этой ошибки, нужно распечатывать памятку с последовательностью действий в примерах, где в середине частного есть нули. Предложите ребенку тренажер с такими заданиями для отработки навыка.

При обучении решению задач с крупными числами действуйте поэтапно:

  1. Объясните, что такое неполное делимое и зачем его выделять.

  2. Потренируйтесь в поиске делимого устно без последующего решения задач. Например, дайте детям такие задания:

Найдите неполное частное в примерах: 369:28; 897:12; 698:36.

  1. Теперь приступайте к решению на бумаге. Запишите столбиком: 1068:89.
  2. Сначала нужно отделить неполное делимое. Можно использовать запятую сверху над числами.

106’8:89

  1. Подбирайте частное на отдельном листочке или посчитайте в уме.
  2. Распишите результат.
  3. Внимательно отнимайте цифры от делимого. Следите за тем, чтобы результат после вычитания был меньше делителя.
  4. Продолжайте деление до конца, пока не получится 0.
  5. Придумайте еще несколько похожих примеров без остатка. Степень сложности увеличивайте постепенно.

Пигментация и коричневые пятна

Солкосерил дентальная адгезивная паста детям

Как правильно делить в столбик

Делить столбиком проще, чем высчитывать в уме. Этот способ наглядный, помогает держать во внимании каждый шаг и запомнить алгоритм, который впоследствии будет срабатывать автоматически.

Рассмотрим пример деления трёхзначного числа на однозначное 322:7. Для начала определимся с терминами:

  • 322 — делимое или то, что необходимо поделить;
  • 7 — делитель или то, на что нужно поделить:
  • частное — результат действия.

Шаг 1. Слева размещаем делимое 322, справа делитель 7, между ставим уголок, а частное посчитаем и запишем под делителем. 

Шаг 2. Смотрим на делимое слева направо и находим ту часть, которая больше делителя. 3, 32 или 322? Нам подходит 32. Теперь нужно определить сколько раз наш делитель 7 содержится в числе 32. Похоже, что четыре раза. Проверяем 4*7=28, 28<32 все верно. Пишем 4 под чертой — это первая цифра частного. Между 32 и 28 ставим знак «минус», вычитаем по правилам и результат записываем под чертой.

Важно:

Результат вычитания должен быть меньше делителя. Если это не так, значит есть ошибка в расчете. Нужно увеличить выбранное число и выполнить действие еще раз.

Шаг 3. Остаток равен 4. Для продолжения решения его нужно увеличить. Мы сделаем это за счет следующей цифры делимого. Приписываем к четверке оставшуюся 2 и продолжаем размышлять.

Шаг 4. Сколько раз делитель 7 содержится в 42? Кажется, шесть раз. Проверяем 7*6=42, 42=42 все верно. Записываем полученное число к четверке справа — это вторая цифра частного. Делаем вычитание в столбик 42 из 42, в остатке получаем 0. Значит числа разделились нацело.

Мы закончили решать пример и в результате получили целое число 46.

Тренировка устного счета

Есть люди, которые умеют совершать несложные арифметические операции в уме. Умножить двузначное число на однозначное, умножать в пределах 20, перемножить два небольших двузначных числа и т.д. – все эти действия они могут производить в уме и достаточно быстро, быстрее среднего человека. Часто этот навык оправдан необходимостью постоянного практического использования. Как правило, люди, которые хорошо считают в уме, имеют математическое образование или, по крайней мере, опыт решения многочисленных арифметических задач.

Несомненно, опыт и тренировка играет важнейшую роль в развитии любых способностей. Но навык устного счета не опирается на один лишь опыт. Это доказывают люди, которые, в отличие от вышеописанных, способны считать в уме гораздо более сложные примеры. Например, такие люди могут умножать и делить трехзначные числа, совершать сложные арифметические операции, которые не каждый человек и в столбик сможет посчитать.

Что же необходимо знать и уметь обычному человеку, чтобы овладеть такой феноменальной способностью? На сегодняшний день существуют различные методики, помогающие научиться быстро считать в уме. Изучив многие подходы к обучению навыку считать устно, можно выделить 3 основных составляющих данного навыка:

1. Способности

Способность концентрировать внимание и умение удерживать в краткосрочной памяти несколько вещей одновременно. Предрасположенность к математике и логическому мышлению

2. Алгоритмы. Знание специальных алгоритмов и умение оперативно подобрать нужный, максимально эффективный алгоритм в каждой конкретной ситуации.

3. Тренировка и опыт, значение которых для любого навыка никто не отменял. Постоянные тренировки и постепенное усложнение решаемых задач и упражнения позволят вам улучшить скорость и качество устного счета.

Нужно отметить, что третий фактор имеет ключевое значение. Не обладая необходимым опытом, вы не сможете удивить окружающих быстрым счетом, даже если вы знаете самый удобный алгоритм

Однако не стоит недооценивать важность первых двух составляющих, поскольку имея в своем арсенале способности и набор нужных алгоритмов, вы сможете «переплюнуть» даже самого опытного «счетовода», при условии, что вы тренировались одинаковое время

Советы детям по упражнениям в устном счете

Перед детьми стоят задачи другого порядка. Помимо утомительного заучивания, их ещё заставляют умножать и делить яблоки и помидоры, а если спросить, зачем это делается – учительница в лучшем случае скажет «надо», а ребенок утратит интерес ко всему процессу в целом.

Изменить систему образования за месяц невозможно, а вот помочь ребенку развить навыки устного счета – вполне реально.

Подготовительный этап

Объясните ребенку доступным языком, почему считать в уме – это не только полезно, но еще и интересно. Если решили заниматься с ним самостоятельно, подберите иллюстрированные материалы из разных источников и составьте график совместных занятий. Необязательно заниматься ежедневно и много часов. Это не пойдет на пользу. Достаточно посвятить этому двадцать минут три раза в неделю, но в одинаковое время, чтобы ребенок привык.

Примеры упражнений для детей

Начните с интересных задач, чтобы «включиться в игру». Покажите, как можно быстро получить ответ на трудный пример и обогнать всех одноклассников. Развивайте лидерские качества.

☞ Пример:

Воспользуемся правилом умножения двухзначных чисел с одинаковыми первыми цифрами и последними, дающими в сумме «10», чтобы решить пример «44*46». Первую цифру умножаем на ту, которая следует за ней по порядку. Последние цифры также перемножаем: 44 * 46 = (4*5 =20; 4*6 = 24) = 2024.

В школе подобные примеры решаются по старинке, в столбик. Это отнимает кучу времени только на то, чтобы все переписать. Зная таблицу умножения для 4, этот пример можно решить в уме за пару секунд.

Чему учат в школе и можно ли верить всему

Классическая школа в целом скептически относится к методикам ускоренного счета, приводя в пример детей, которые, обученные методам ментальной математики, затем не стремятся логически мыслить по другим предметам, хотят все делать быстро, как привыкли, а не качественно.

Но это связано в большей мере с косностью образовательной программы, чем с реальным положением вещей.

Видео информация

https://youtube.com/watch?v=q9COysaAb6k

Ментальная математика помогает активизировать мыслительные процессы, но не призывает выбросить тетради, чтобы не считать в столбик, и книги, чтобы не читать. Методы устного счета хорошо усваиваются ребенком параллельно с методами письменного, которые чаще используются в арифметике начальной школе. Он видит несколько путей решения задач и чувствует себя более уверенно, по сравнению с одноклассниками.

 Загрузка …

К сожалению, при проверке контрольной работы для педагога важнее увидеть правильный «как в учебнике» ход решения, а не реальные знания ребенка, но здесь ментальная математика уже бессильна.

Тренировки

Важный этап для развития навыка считать в уме.

Для тренировки можно использовать специальные компьютерные программы или игры:

  1. «Магазин». Ребенок может играть роль, как продавца, так и покупателя, все подсчеты должны проводиться в уме. Цены на товары устанавливаются в зависимости от способностей ученика.
  2. «Веселый счет». Взрослый кидает ребенку мяч и называет пример, на который нужно дать ответ. Таким образом, воспитывается счет на автомате.
  3. «Цепочки». Дается цепочка примеров, детям нужно найти конечный результат, не записывая промежуточные результаты вычислений.

Если ребенок будет регулярно считать в уме, то этот навык будет развиваться. Такие занятия будут хорошей базой для изучения таблицы умножения и выполнения арифметических действий с трехзначными числами.
Видео сюжет расскажет, как научить школьника быстро считать в уме — не ментальная арифметика

Как настроить ребенка на обучение?

Самое главное — любите ребенка и стройте все только на этом.
Обсудите с ребенком важность обучения арифметике и образования в целом.
Воспитывайте у ребенка любовь к учебе. От того, как вы отзываетесь об обучении и образовании в целом, зависит и настрой вашего ребенка.
Дайте понять ребенку, что он всегда может положиться на вас в случае неудачи

Поддерживайте его веру в собственные силы, повышайте самооценку, но подчеркните, что его успех зависит только от него самого.
Четко ставьте цели перед ребенком: чего хотим добиться, какими знаниями обладать.
Определяйте сроки реализации поставленной цели (когда надо сделать задание, выучить материал).
Повышайте мотивацию ребенка, поощряя его за достижения, особенно те, которые дались ему с трудом.
Учите ребенка самостоятельности — он сам должен отвечать за выполнение поставленных задач. Таким образом, у ребенка будет появляться мотивация не только к учебе, но и к самосовершенствованию в течение всей жизни.
Не сравнивайте результаты обучения ребенка, особенно негативные, с другими ребятами — это может привести к раздражению и нежеланию продолжать.

Обучение делению столбиком в уме

В уме дети считают тоже столбиком. Это удобно и знакомо. У детей развито воображение, поэтому они смогут быстро освоить технику. Приступать к обучению деления столбиком в уме нужно тогда, когда ребенок без труда справляется с делением в тетради. Обучение:

  • Расскажите школьнику о том, что делить столбиком можно не только в тетради, но и в уме.
  • Объясните ученику о том, что частное можно разложить на составляющие.
  • Значение 3647необходимо поделить на 7. Нужно показать частное как сумму чисел 3500 и 147. Значение 3500 самое оптимальное, так как его можно поделить на 7, не имея остатка. В результате деления 3500 на 7 получается 500, а при делении 147 на 7 получается 21. Числа 500 и 21 нужно сложить, в результате получится 521. Данное число является ответом в примере деления 3647 на 7.

Ребенок не сразу может освоить эту технику деления. Все зависит от родителей. Их задача заключается в помощи ребенку без давления.

Уроки на сайте

Уроки устного счета, представленные на сайте, направлены именно на развитие этих трех составляющих. В первом уроке рассказано, как развить в себе предрасположенность к математике и арифметике, а также описаны основы счета и логики. Затем дан ряд уроков по специальным алгоритмам для совершения различных арифметических операций в уме. И наконец, в данном тренинге представлены дополнительные материалы, помогающие тренировать и развивать умение считать устно, для того, чтобы суметь применить свой талант и свои знания в жизни.

Урок 1. Способности. Упражнения и рекомендации по развитию устного счета, внимания, краткосрочной памяти.

Урок 1

Внимание и концентрация при счете в уме. Уроки 2-7

Алгоритмы. Что касается методик, то они даны в следующих уроках, которые разделены на несколько видов:

Уроки 2-7. Алгоритмы. Что касается методик, то они даны в следующих уроках, которые разделены на несколько видов:

  • Урок 2. Простые арифметические закономерности
  • Урок 3. Традиционные методы умножения двузначных чисел
  • Урок 4. Частные методики умножения двузначных чисел
  • Урок 5. Опорное число при умножении чисел до 100
  • Урок 6. Умножаем любые числа до 100
  • Урок 7. Возведение в квадрат

Дополнительные материалы. Тренировка. В дополнение к урокам на сайте представлены многочисленные приемы и способы, упражнения, методики, интересные примеры, статьи и видео и многое другое для тренировки и развития вашего быстрого счета в уме.

Уже сейчас вы можете проверить, как быстро вы считаете в уме.

Cтатистика На весь экран

Делаем выводы

В важности умения устного подсчета сомнений нет. Чтобы добиться желанных результатов, каждому родителю следует:

  • Запастись терпением. Помните, малыш – не робот. С первого раза выучить все цифры и действия с ними нереально. Не ругайте детей за ошибки, старайтесь поддерживать атмосферу любви, заботы и взаимопонимания.
  • Подготовить материал. Купите готовые развивающие наборы или сделайте их вручную. Карточки, кубики и игрушки окажут серьезную помощь в обучении.
  • Хвалить своего малыша. Дети, как никто другой, нуждаются в родительском одобрении. Не забывайте хвалить малыша за его успехи.

Если у вас не хватает времени или педагогического таланта, воспользуйтесь сервисом BrainApps. Применение эффективных методик, разработанных ведущими специалистами, сбережет вам нервы и докажет, что ваше чадо способно на невероятные интеллектуальные свершения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector