3 класс: деление с остатком, примеры и пояснения

Передозировка

Как делить столбиком

Допустим, нам нужно разделить  780  на  12,  записываем действие в столбик и приступаем к делению:

Деление столбиком выполняется поэтапно. Первое, что нам требуется сделать, это определить неполное делимое. Смотрим на первую цифру делимого:

это число  7,  так как оно меньше делителя, то мы не можем начать деление с него, значит нужно взять ещё одну цифру из делимого, число  78  больше делителя, поэтому мы начинаем деление с него:

В нашем случае число  78  будет неполным делимым, неполным оно называется потому, что является всего лишь частью делимого.

Определив неполное делимое, мы можем узнать сколько цифр будет в частном, для этого нам нужно посчитать, сколько цифр осталось в делимом после неполного делимого, в нашем случае всего одна цифра —  0,  это значит, что частное будет состоять из  2  цифр.

Узнав количество цифр, которое должно получиться в частном, на его месте можно поставить точки. Если при завершении деления количество цифр получилось больше или меньше, чем указано точек, значит где-то была допущена ошибка:

Приступаем к делению. Нам нужно определить сколько раз  12  содержится в числе  78.  Для этого мы последовательно умножаем делитель на натуральные числа  1, 2, 3, …,  пока не получится число максимально близкое к неполному делимому или равное ему, но не превышающее его. Таким образом мы получаем число  6,  записываем его под делитель, а из  78  (по правилам вычитания столбиком) вычитаем  72  (12 · 6 = 72).  После того, как мы вычли  72  из  78,  получился остаток  6:

Обратите внимание, что остаток от деления показывает нам, правильно ли мы подобрали число. Если остаток равен делителю или больше него, то мы не правильно подобрали число и нам нужно взять число побольше

К получившемуся остатку —  6,  сносим следующую цифру делимого —  0.  В результате, получилось неполное делимое —  60.  Определяем, сколько раз  12  содержится в числе  60.  Получаем число  5,  записываем его в частное после цифры  6,  а из  60  вычитаем  60  (12 · 5 = 60).  В остатке получился нуль:

Так как в делимом больше не осталось цифр, значит  780  разделилось на  12  нацело. В результате выполнения деления столбиком мы нашли частное — оно записано под делителем:

780 : 12 = 65.

Рассмотрим пример, когда в частном получаются нули. Допустим нам нужно разделить  9027  на  9.

Определяем неполное делимое — это число  9.  Записываем в частное  1  и из  9  вычитаем  9.  В остатке получился нуль. Обычно, если в промежуточных вычислениях в остатке получается нуль, его не записывают:

Сносим следующую цифру делимого —  0.  Вспоминаем, что при делении нуля на любое число будет нуль. Записываем в частное нуль  (0 : 9 = 0)  и в промежуточных вычислениях из  0  вычитаем  0.  Обычно, чтобы не нагромождать промежуточные вычисления, вычисление с нулём не записывают:

Сносим следующую цифру делимого —  2.  В промежуточных вычислениях вышло так, что неполное делимое  (2)  меньше, чем делитель  (9).  В этом случае в частное записывают нуль и сносят следующую цифру делимого:

Определяем, сколько раз  9  содержится в числе  27.  Получаем число  3,  записываем его в частное, а из  27  вычитаем  27.  В остатке получился нуль:

Так как в делимом больше не осталось цифр, значит число  9027  разделилось на  9  нацело:

9027 : 9 = 1003.

Рассмотрим пример, когда делимое оканчивается нулями. Пусть нам требуется разделить  3000  на  6.

Определяем неполное делимое — это число  30.  Записываем в частное  5  и из  30  вычитаем  30.  В остатке получился нуль. Как уже было сказано, нуль в остатке в промежуточных вычислениях записывать не обязательно:

Сносим следующую цифру делимого —  0.  Так как при делении нуля на любое число будет нуль, записываем в частное нуль и в промежуточных вычислениях из  0  вычитаем  0:

Сносим следующую цифру делимого —  0.  Записываем в частное ещё один нуль и в промежуточных вычислениях из  0  вычитаем  0.  Так как в промежуточных вычислениях, вычисление с нулём обычно не записывают, то запись можно сократить, оставив только остаток —  0.  Нуль в остатке в самом конце вычислений обычно записывают для того, чтобы показать, что деление выполнено нацело:

Так как в делимом больше не осталось цифр, значит  3000  разделилось на  6  нацело:

3000 : 6 = 500.

Советы опытных учителей

Опытные учителя советуют, как научить ребенка умножению и делению: лучше объяснить их школьнику в классе вместе. Ведь деление — это процесс, обратный умножению. При произведении процессов в столбик используется таблица умножения. Её применяют так: по ней и ищут первое ближайшее число, на которые можно разделить делимое с заданным делителем. Если нужно разделить 37 на 6, то это 6.

По мере учёбы можно перейти от простых чисел более сложным. Если число большое и выходит за границы таблицы умножения, ученику придется посчитать, сколько примерно раз делитель содержится в делимом. Двузначное 24 содержится в 264 11 раз. Но посчитать это ребёнку, который только осваивает умножение, трудно. И такие задачи пока лучше отложить.

Читайте еще: Лучшие развивающие игры для детей

Ещё хитрость: научить раскладывать делимое на части, которые делятся быстрее. Легко делятся те числа, которые входят в таблицу умножения, или которые делятся на двузначное 10. Приучайте, что если взять большое число и разложить его на сотни, десятки и оставшееся, а потом по отдельности разделить все это и сложить, то процесс займет меньше времени.

36 = (20+16):2 = 20:2 + 16:2 = 10 +8 = 18.

Многие дети не в состоянии освоить деление не потому, что они глупые, а потому что им не дают времени, чтобы ею заняться. Перегруженные предметами программы, дети вряд ли в состоянии выделить на математику столько времени, сколько на нее нужно. Таким детям необходимо давать дополнительные занятия, и только после освоения переходить к другой теме. Иначе отвращение к математике может выработаться на всю жизнь.

И наоборот, если ребёнку дают время освоить ее, он состоит полюбить е и даже связать впоследствии жизни с точными и техническими науками.

В программировании

Операция вычисления неполного частного и остатка в различных языках программирования
Язык Неполноечастное Остаток Знак остатка
ActionScript Делимое
Ada Делитель
Делимое
Бейсик Не определено
Си (ISO 1990) Не определено
Си (ISO 1999) Делимое
C++ (ISO 2003) Не определено
C++ (ISO 2011) Делимое
C# Делимое
ColdFusion Делимое
Common Lisp Делитель
Делимое
D Делимое
Delphi Делимое
Eiffel Делимое
Erlang Делимое
Euphoria Делимое
Microsoft Excel (англ.) Делитель
Microsoft Excel (рус.)
FileMaker Делитель
Fortran Делимое
Делитель
GML (Game Maker) Делимое
Go Делимое
Haskell Делитель
Делимое
J Делитель
Java Делимое
Делитель (1.8+)
JavaScript Делимое
Lua Делитель
Mathematica Делитель
MATLAB Делитель
Делимое
MySQL Делимое
Oberon +, если делитель >0
Objective Caml Не определено
Pascal Делимое
Perl Нет Делитель
PHP Нет Делимое
PL/I Делитель (ANSI PL/I)
Prolog (ISO 1995) Делитель
PureBasic Делимое
Python Делитель
QBasic Делимое
R Делитель
RPG Делимое
Ruby Делитель
Scheme Делитель
SenseTalk Делитель
Делимое
Tcl Делитель
Verilog (2001) Делимое
VHDL Делитель
Делимое
Visual Basic Делимое

Нахождение остатка от деления часто используется в компьютерной технике и телекоммуникационном оборудовании для создания контрольных чисел и получении случайных чисел в ограниченном диапазоне, например в конгруэнтном генераторе случайных чисел.

Обозначения операции взятия остатка в различных языках программирования представлены в таблице справа.
Например, в Паскале операция вычисляет остаток от деления, а операция осуществляет целочисленное деление, при котором остаток от деления отбрасывается:

78 mod 33 = 12
78 div 33 = 2

Знак остатка

Важно отметить, что операция взятия остатка в языках программирования может возвращать отрицательный результат (для отрицательного делимого или делителя). Тут есть два варианта:

  • Знак остатка совпадает со знаком делимого: неполное частное округляет к нулю.
  • Знак остатка совпадает со знаком делителя: неполное частное округляет к −∞.

Если в языке есть оба типа остатков, каждому из них соответствует своя операция неполного частного. Обе операции имеют жизненный смысл.

  • Есть сумма n копеек, положительная или отрицательная. Перевести её в рубли и копейки. — и . Знак остатка совпадает со знаком делимого.
  • Есть бесконечное клеточное поле, каждая клетка — 16×16 пикселей. В какую клетку попадает точка (x, y), и каковы координаты относительно верхнего левого угла клетки? — и соответственно. Знак остатка совпадает со знаком делителя.

Как запрограммировать, если такой операции нет?

Неполное частное можно вычислить через деление и взятие целой части: q=ab{\displaystyle q=\left} (, в зависимости от задачи, может быть «полом» или усечением). Однако деление здесь получается дробное, которое намного медленнее целого. Такой алгоритм используется в языках, в которых нет целых типов (отдельные электронные таблицы, программируемые калькуляторы и математические программы), а также в скриптовых языках, в которых издержки интерпретации намного превышают издержки дробной арифметики (Perl, PHP).

При отсутствии команды остаток программируется как a−qb{\displaystyle a-qb}.

Если b положительно, а знак r совпадает со знаком делимого, не определён или неизвестен, для нахождения минимального неотрицательного остатка можно воспользоваться формулой r′=(b+(amod⁡b))mod⁡b{\displaystyle r’=(b+(a\operatorname {mod} b))\operatorname {mod} b}.

Деление с остатком

Деление с остатком подразумевает, что нацело число поделить не удалось и осталась какая-то часть, которая меньше делителя и которую разделить нельзя.

Где это может пригодиться в реальной жизни? Представим себе вполне реальную ситуацию: мы покупаем в магазине конфеты батончики по 38 рублей. Всего у нас 200 рублей, сколько сдачи нам должны дать?

Очевидно, что ровное количество конфет купить не получится, поскольку 200 на 38 нацело не поделится, но и конфету пилить в магазине не будут. Значит, остаток от 200 нам должны будут вернуть в виде сдачи.

$200:38=5 (ост.10)$ – именно 10 рублей остатка и будут сдачей, которую нам должны вернуть.

Долгое время только такие вычисления и производились, до тех пор, пока не возникла надобность в точных расчетах. Тогда на смену делению с остатком пришли десятичные дроби.

Противопоказания

Алгоритм деления столбиком пошагово!

После того, как вы записали делимое и делитель по выше описанному правилу, считаем сколько цифр имеет делитель. В скрине ниже — делитель состоит из одной цифры — 4.

Смотрим на делимое(число, которое будем делить), а точнее на первую цифру слева(2) и сравниваем её с делимым(4). Очевидно, что 4 > 2 из чего получается, что при делении 2 на 4 мы целых не получим — это нам не подходит, переходим ск следующему пункту.

Далее смотрим на число, которое составляет две цифры слева — 23. Понятно, что 23 > 4. Если мы разделим 23 на 4, то получим 5 и 3 в остатке. Скобки применены, чтобы вы понимали, какое действие будет выполняться первым.

23 : 4 = (4 * 5) + 3

5 — записываем под горизонтальной линией, под делителем.

20 — результат умножения делителя и частного 4 * 5 = 20, записываем под делимым 23.

Отнимаем от делимого(23), полученный результат(20) , 23 — 20 = 3.

3 — получился остаток, который меньше 4.

Если вы еще не изучали десятичные дроби. То здесь мы останавливаемся.

Итого :

Многозначные числа

Сложнее всего детям даются задачи на трехзначные и четырехзначные числа. Четверокласснику тяжело оперировать тысячами и сотнями тысяч. У школьника возникают следующие проблемы:

  1. Не может определить неполное число делимого для первого действия. Вернитесь к изучению разрядов натуральных чисел, поработайте над развитием внимания малыша.
  2. Пропускает 0 в записи частного. Это самая распространенная проблема. В результате у ребенка получается число на несколько разрядов меньше правильного. Чтобы избежать этой ошибки, нужно распечатывать памятку с последовательностью действий в примерах, где в середине частного есть нули. Предложите ребенку тренажер с такими заданиями для отработки навыка.

При обучении решению задач с крупными числами действуйте поэтапно:

  1. Объясните, что такое неполное делимое и зачем его выделять.

  2. Потренируйтесь в поиске делимого устно без последующего решения задач. Например, дайте детям такие задания:

Найдите неполное частное в примерах: 369:28; 897:12; 698:36.

  1. Теперь приступайте к решению на бумаге. Запишите столбиком: 1068:89.
  2. Сначала нужно отделить неполное делимое. Можно использовать запятую сверху над числами.

106’8:89

  1. Подбирайте частное на отдельном листочке или посчитайте в уме.
  2. Распишите результат.
  3. Внимательно отнимайте цифры от делимого. Следите за тем, чтобы результат после вычитания был меньше делителя.
  4. Продолжайте деление до конца, пока не получится 0.
  5. Придумайте еще несколько похожих примеров без остатка. Степень сложности увеличивайте постепенно.

Примеры на деление в столбик

Давайте закрепим знания на практике. Для этого разделите столбиком примеры ниже, а после проверьте полученные цифры — чур, не подглядывать!

Легкий уровень

Средний уровень

Сложный уровень

27:3=

48:4=

56:8=

72:9=

95:5=

270:15=

504:14=

315:5=

728:8=

855:9=

1749:11=

1080:45=

3888:72=

5248:64=

4818:66=

Ответы: 

  • легкий уровень: 9; 12; 7; 8; 19;
  • средний уровень: 18; 36; 63; 91; 95;
  • сложный уровень: 159; 24; 54; 82; 73.

В детской школе Skysmart ученики решают примеры вместе с енотом Максом и его друзьями. Мы подобрали для вашего ребенка тысячи увлекательных заданий — от простых логических загадок до хитрых головоломок, над которыми интересно подумать. Все это поможет легче и быстрее справиться со школьной математикой. Запишите вашего ребенка на бесплатный вводный урок математики в Skysmart — мы покажем, что математика может быть увлекательным путешествием!

Пример деления столбиком

Предположим, что нам нужно разделить число 102 на 4

Разберем это на картинке :

Первое, поскольку у нас цифра 4 однозначное, то проверяем первую цифру слева — это 1, то понятно, что 1 меньше 4, а нам нужно наоборот. Например, если бы перове число слева было бы рано 5, то нам не пришлось бы брать вторую цифру в делимом.

Берем двузначное число слева — это 10 и сравниваем с нажим делителем… 10 больше 4, теперь, все правильно, далее нам потребуется узнать «нод» двух чисел.

Не буду повторять, что такое «нод» — лишь покажу на примере, как мы видим, цифру 10 и делитель 4, то их общий нод будет 2. Или другими словами, в числе 10 умещается всего 2 числа 4…

Этот нод заносим под горизонтальную черту в область частного и умножаем его на 4 — это будет 8, и 8 ставим под ноль

От 10 отняли 8 и ставим его под черту под цифру 8 и если это число получилось меньше 4, то значит нод был найден верно! И нодом нам придется пользоваться много раз, поэтому нужно научиться его находить!

Теперь, у нас в самом верху еще осталась одна двойка, её сносим ниже к двойке, которая получилась отниманием от 10 восьмерки, получается число 22.

Далее опять находим нод чисел 22 и 4 — это 5,

5 заносим его под черту, ставим его после первого найденого нода.

Умножаем 5 на 4 — это будет 20,

20 ставим под 22.

Отнимем опять и получим 2 — это остаток.

Поскольку у нас наверху не осталось цифр, то ставим 0 и у нас получается 1020 — это означает, что мы перешли из целых в десятые, поэтому, под черту, рядом с пятеркой ставим точку(или запятую(зависит от того, как вас будут учить… )).

Сносим наш ноль до остатка, что получается 20.

Находим нод 20 и 4 — это опять 5.

Заносим 5 под черту рядом с запятой.

Умножаем 4 на 5 = 20.

Ставим его под нашим остатком и нулем.

Отнимаем — получаем ноль.

Задача

Решим интересную задачу. Семья Ивановых состоит из трех человек: отца, матери и мальчика Леши. Посчитайте, сможет ли семья за год накопить на совместный отдых ценой в 80 тыс.руб. , если отец зарабатывает в месяц 40 тыс., мать 30 тыс. Каждый из членов семьи тратит по 5 тыс. на личные нужды. На квартиру расходуется 25 тыс. рублей, 6 тыс. уходит на еду, а 7 тратится на школу и дополнительные занятия для ребенка. Отпуск родителей составляет все три летних месяца.

  • Для начала посчитаем, сколько времени есть у семьи, чтобы накопить на отдых. В году 12 месяцев, из них 3 родители не работают, значит: 12-3=9
  • Посчитаем общие затраты в месяц: 5*3+25+6+7=53 тыс.руб – тратится семьей в месяц.
  • Расходы за рабочий год: 53*9=477 тыс.руб.
  • Кроме того, эти три месяца отдыха семья также будет расходовать деньги. Логично, что на учебу деньги расходоваться не будут, так как у ребенка в это время также будут каникулы.

За время отпуска в месяц будет тратится: 5*3+25+6=46

  • За весь отпуск потратится: 46*3=138 тыс.руб.
  • Посчитаем расходы за год: 477+138=615 тыс.руб.-сумма расходов в рабочее время и отпуск.
  • Теперь подсчитаем доход: 40+30=70 тыс.руб. – в месяц
  • 70*9=630 тыс. в год
  • Поделим доход на расход. Остаток – это будет тот излишек, который семья может позволить себе потратить на отпуск: 630:615=1 (ост.15).

Полученная 1 означает, что доходы семьи покрывают ее расходы, а остаток это тот излишек, который накапливается за год. Как мы видим, семье не хватит денег на летний отпуск и им придется провести его дома.

Что мы узнали?

Мы узнали о том, что деление является постоянной частью нашей жизни, узнали о существовании деления с остатком, определили алгоритм решения таких примеров и решили задачу.

  1. Вопрос 1 из 5

Начать тест(новая вкладка)

Пигментация и коричневые пятна

В программировании

Операция вычисления неполного частного и остатка в различных языках программирования
Язык Неполноечастное Остаток Знак остатка
ActionScript Делимое
Ada Делитель
Делимое
Бейсик Не определено
Си (ISO 1990) Не определено
Си (ISO 1999) Делимое
C++ (ISO 2003) Не определено
C++ (ISO 2011) Делимое
C# Делимое
ColdFusion Делимое
Common Lisp Делитель
Делимое
D Делимое
Delphi Делимое
Eiffel Делимое
Erlang Делимое
Euphoria Делимое
Microsoft Excel (англ.) Делитель
Microsoft Excel (рус.)
FileMaker Делитель
Fortran Делимое
Делитель
GML (Game Maker) Делимое
Go Делимое
Haskell Делитель
Делимое
J Делитель
Java Делимое
Делитель (1.8+)
JavaScript Делимое
Lua Делитель
Mathematica Делитель
MATLAB Делитель
Делимое
MySQL Делимое
Oberon +, если делитель >0
Objective Caml Не определено
Pascal Делимое
Perl Нет Делитель
PHP Нет Делимое
PL/I Делитель (ANSI PL/I)
Prolog (ISO 1995) Делитель
PureBasic Делимое
Python Делитель
QBasic Делимое
R Делитель
RPG Делимое
Ruby Делитель
Scheme Делитель
SenseTalk Делитель
Делимое
Tcl Делитель
Verilog (2001) Делимое
VHDL Делитель
Делимое
Visual Basic Делимое

Нахождение остатка от деления часто используется в компьютерной технике и телекоммуникационном оборудовании для создания контрольных чисел и получении случайных чисел в ограниченном диапазоне, например в конгруэнтном генераторе случайных чисел.

Обозначения операции взятия остатка в различных языках программирования представлены в таблице справа.
Например, в Паскале операция вычисляет остаток от деления, а операция осуществляет целочисленное деление, при котором остаток от деления отбрасывается:

78 mod 33 = 12
78 div 33 = 2

Знак остатка

Важно отметить, что операция взятия остатка в языках программирования может возвращать отрицательный результат (для отрицательного делимого или делителя). Тут есть два варианта:

  • Знак остатка совпадает со знаком делимого: неполное частное округляет к нулю.
  • Знак остатка совпадает со знаком делителя: неполное частное округляет к −∞.

Если в языке есть оба типа остатков, каждому из них соответствует своя операция неполного частного. Обе операции имеют жизненный смысл.

  • Есть сумма n копеек, положительная или отрицательная. Перевести её в рубли и копейки. — и . Знак остатка совпадает со знаком делимого.
  • Есть бесконечное клеточное поле, каждая клетка — 16×16 пикселей. В какую клетку попадает точка (x, y), и каковы координаты относительно верхнего левого угла клетки? — и соответственно. Знак остатка совпадает со знаком делителя.

Как запрограммировать, если такой операции нет?

Неполное частное можно вычислить через деление и взятие целой части: q=ab{\displaystyle q=\left} (, в зависимости от задачи, может быть «полом» или усечением). Однако деление здесь получается дробное, которое намного медленнее целого. Такой алгоритм используется в языках, в которых нет целых типов (отдельные электронные таблицы, программируемые калькуляторы и математические программы), а также в скриптовых языках, в которых издержки интерпретации намного превышают издержки дробной арифметики (Perl, PHP).

При отсутствии команды остаток программируется как a−qb{\displaystyle a-qb}.

Если b положительно, а знак r совпадает со знаком делимого, не определён или неизвестен, для нахождения минимального неотрицательного остатка можно воспользоваться формулой r′=(b+(amod⁡b))mod⁡b{\displaystyle r’=(b+(a\operatorname {mod} b))\operatorname {mod} b}.

Подбор неполного частного

При делении данных натуральных чисел a и b с остатком неполное частное c можно подобрать. Сейчас мы покажем, на чем основан процесс подбора и как он должен проходить.

Сначала определимся, среди каких чисел искать неполное частное. Когда мы говорили о смысле деления натуральных чисел с остатком, то выяснили, что неполное частное может быть либо нулем, либо натуральным числом, то есть, одним из чисел , 1, 2, 3, … Таким образом, искомое неполное частное является одним из записанных чисел, и нам остается перебрать их, чтобы определить, каким именно числом является неполное частное.

Дальше нам потребуется уравнение вида d=a−b·c, задающее , а также тот факт, что остаток всегда меньше делителя (это мы также упоминали, когда говорили о смысле деления натуральных чисел с остатком).

Теперь можно переходить непосредственно к описанию процесса подбора неполного частного. Делимое a и делитель b нам известны изначально, в качестве неполного частного c мы последовательно принимаем числа , 1, 2, 3, …, каждый раз вычисляя значение d=a−b·c и сравнивая его с делителем. Этот процесс завершается, как только полученное значение будет меньше, чем делитель. При этом число c на этом шаге является искомым неполным частным, а значение d=a−b·c является остатком от деления.

Осталось разобрать процесс подбора неполного частного на примере.

Пример.

Выполните деление с остатком натурального числа 267 на 21.

Решение.

Подберем неполное частное. В нашем примере a=267, b=21. Будем последовательно придавать c значения , 1, 2, 3, …, вычисляя на каждом шаге значение d=a−b·c и сравнивая его с делителем 21.

При c=0 имеем d=a−b·c=267−21·0=267−0=267 (сначала выполняется умножение натуральных чисел, а затем – вычитание, об этом написано в статье порядок выполнения действий). Полученное число больше, чем 21 (при необходимости изучите материал статьи сравнение натуральных чисел). Поэтому продолжаем процесс подбора.

При c=1 имеем d=a−b·c=267−21·1=267−21=246. Так как 246>21, то продолжаем процесс.

При c=2 получаем d=a−b·c=267−21·2=267−42=225. Так как 225>21, то двигаемся дальше.

При c=3 имеем d=a−b·c=267−21·3=267−63=204. Так как 204>21, то продолжаем подбор.

Далее по аналогии вычисляем значения d=a−b·c при c=4, 5, 6, …, 11.

При c=12 получаем d=a−b·c=267−21·12=267−252=15. Получили число 15, которое меньше, чем 21, поэтому процесс можно считать завершенным. Мы подобрали неполное частное c=12, при этом остаток d получился равным 15.

Ответ:

267:21=12 (ост. 15).

Обобщения

Вещественные числа

Если два числа a{\displaystyle a} и b{\displaystyle b} (отличное от нуля) относятся к множеству вещественных чисел, a{\displaystyle a} может быть поделено на b{\displaystyle b} без остатка, и при этом частное также является вещественным числом. Если же частное по условию должно быть целым числом, в этом случае остаток будет вещественным числом, то есть может оказаться дробным.

Формально:

если a,b∈R,b≠{\displaystyle a,b\in \mathbb {R} ,b\neq 0}, то a=bq+r{\displaystyle a=bq+r}, где ⩽r<|b|{\displaystyle 0\leqslant r<|b|}
Пример

Деление 7,9 на 2,1 с остатком даёт:

⌊7,92,1⌋=3{\displaystyle \left\lfloor {\frac {7{,}9}{2{,}1}}\right\rfloor =3} (неполное частное)
7,9−3⋅2,1=1,6{\displaystyle 7{,}9-3\cdot 2{,}1=1{,}6} (остаток)

Гауссовы целые числа

Гауссово число — это комплексное число вида a+bi{\displaystyle a+bi}, где a,b{\displaystyle a,b} — целые числа. Для них можно определить деление с остатком: любое гауссово число u{\displaystyle u} можно разделить с остатком на любое ненулевое гауссово число v{\displaystyle v}, то есть представить в виде:

u=vq+r{\displaystyle u=vq+r}

где частное q{\displaystyle q} и остаток r{\displaystyle r} — гауссовы числа, причём |r|<|v|.{\displaystyle |r|<|v|.}
Однако, в отличие от целых чисел, остаток от деления определяется неоднозначно. Например, 7+2i{\displaystyle 7+2i} можно разделить на 3−i{\displaystyle 3-i} тремя способами:

7+2i=(3−i)(2+i)+i=(3−i)(1+i)+3=(3−i)(2+2i)+(−1−2i){\displaystyle 7+2i=(3-i)(2+i)+i=(3-i)(1+i)+3=(3-i)(2+2i)+(-1-2i)}

Многочлены

При делении с остатком двух многочленов f(x){\displaystyle f(x)} и g(x){\displaystyle g(x)} для однозначности результата вводится условие: степень многочлена-остатка должна быть строго меньше степени делителя:

f(x)=q(x)g(x)+r(x){\displaystyle f(x)=q(x)g(x)+r(x)\quad }, причём deg⁡(r)<deg⁡(g).{\displaystyle \quad \deg(r)<\deg(g).}
Пример
2×2+4x+5x+1=2x+2{\displaystyle {\frac {2x^{2}+4x+5}{x+1}}=2x+2} (остаток 3), так как 2x² + 4x + 5 = (x + 1)(2x + 2) + 3

Деление с остатком

Завершающим этапом уроков на закрепление навыка деления будет решение заданий с остатком. Они обязательно встретятся в решебнике для 3–4-го класса. В гимназиях с математическим уклоном школьники изучают не только неполные числа, но и десятичные дроби. Форма записи примера уголком останется прежней, отличаться будет только ответ.

Примеры на деление с остатком берите несложные, можно преобразовывать уже решенные задания с целым числом в ответе, прибавляя к делимому единицу. Это очень удобно для ребенка, он сразу увидит, чем примеры похожи и чем отличаются.

Урок может выглядеть так:

  1. Расскажите ученику третьего класса, что не все цифры можно поделить поровну. Для иллюстрации понятия возьмите натуральное число до 10. Например, попробуйте вместе разделить 9 на 2. Форма записи решения столбиком получится такой:
  2. Объясните школьнику, что остатком считается последнее число для деления, которое меньше делителя. Конец записи будет таким: 9:2=4 (1 — остаток).

Оглавление

Деление натуральных чисел с остатком через последовательное вычитание

Найти неполное частное и остаток от деления натуральных чисел можно, выполняя последовательное вычитание делителя.

Суть этого подхода проста: из элементов имеющегося множества последовательно формируются множества с требуемым количеством элементов до того момента, пока это возможно, количество полученных множеств дает неполное частное, а количество оставшихся элементов в исходном множестве – остаток от деления.

Приведем пример.

Пример.

Допустим, нам нужно разделить 7 на 3.

Решение.

Представим, что нам нужно разложить 7 яблок в пакеты по 3 яблока. Из исходного количества яблок мы берем 3 штуки и кладем их в первый пакет. При этом в силу у нас остается 7−3=4 яблока. Из них мы опять берем 3 штуки, и кладем их во второй пакет. После этого у нас остается 4−3=1 яблоко. Понятно, что на этом процесс заканчивается (мы не можем сформировать еще один пакет с требуемым количеством яблок, так как оставшееся количество яблок 1 меньше нужного нам количества 3). В итоге мы имеем два пакета с требуемым количеством яблок и одно яблоко в остатке.

Тогда в силу можно утверждать, что мы получили следующий результат 7:3=2 (ост. 1).

Ответ:

7:3=2 (ост. 1).

Рассмотрим решение еще одного примера, при этом приведем лишь математические выкладки.

Пример.

Разделите натуральное число 145 на 46, выполняя последовательное вычитание.

Решение.

145−46=99 (при необходимости обращайтесь к статье вычитание натуральных чисел). Так как 99 больше, чем 46, то проводим вычитание делителя второй раз: 99−46=53. Так как 53>46, то вычитаем делитель третий раз: 53−46=7. Так как 7 меньше, чем 46, то еще раз провести вычитание мы не сможем, то есть, на этом заканчиваем процесс последовательного вычитания.

В итоге нам потребовалось из делимого 145 последовательно вычесть 3 раза делитель 46, после чего получился остаток 7. Таким образом, 145:46=3 (ост. 7).

Ответ:

145:46=3 (ост. 7).

Следует заметить, что если делимое меньше делителя, то мы не сможем проводить последовательное вычитание. Да это и не нужно, так как в этом случае мы можем сразу написать ответ. В этом случае неполное частное равно нулю, а остаток равен делимому. То есть, если a<b, то a:b=0 (ост. a). Например, 47:73=0 (ост. 43). А при делении с остатком 12 на 36 неполное частное равно , а остаток от деления равен 12.

Еще нужно сказать, что выполнять деление натуральных чисел с остатком рассмотренным способом хорошо лишь тогда, когда для получения результата требуется провести небольшое количество последовательных вычитаний.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector